ORGANIC LETTERS

2009 Vol. 11, No. 12 2675–2678

Stereoselective Synthesis of 4-Amino-2, 3-unsaturated-*N*-Cbz-imino-*O*-glycosides via New Diastereoisomeric *N*-Cbz-Imino Glycal-Derived Allyl *N*-Nosyl Aziridines

Valeria Di Bussolo,* Annalisa Fiasella, Lucilla Favero, Ferruccio Bertolini, and Paolo Crotti*

Dipartimento di Scienze Farmaceutiche, sede Chimica Bioorganica e Biofarmacia, Università di Pisa, Via Bonanno 33, I-56126 Pisa, Italy

valeriadb@farm.unipi.it; crotti@farm.unipi.it

Received April 7, 2009

ABSTRACT

The glycosylation of alcohols by the new diastereoisomeric D,L-6-deoxy-N-Cbz-imino glycal-derived allyl N-nosyl aziridines 5 and 6 affords, after deprotection of the 4-(N-nosylamino) group, the corresponding 2,3-unsaturated-N-Cbz-imino-O-glycosides bearing a free amino group on C(4) through a completely 1,4-regio- and *substrate-dependent* stereoselective glycosylation process.

Recently, we found that the reaction of the diastereoisomeric D,L-imino galactal- and D,L-imino allal-derived allyl epoxides 1 and 2 with O-nucleophiles, such as simple alcohols, led to the corresponding alkyl O-glycosides through a completely regio- and stereoselective 1,4-addition process. The stereoselectivity observed depended only on the configuration of the starting heterocycle: α - and β -O-glycosides were exclusively obtained from epoxides 1 and 2, respectively, in a first example of a *substrate-dependent* selectivity in nucleophilic addition reactions to imino glycal derivatives (Scheme 1). 1

To improve the synthetic utilization of imino glycals and their derivatives, the possibility of extending the previous studies on epoxides 1 and 2 to corresponding aziridines, such as the structurally related diastereoisomeric *N*-nosyl aziridines 3 and 4 and/or the related 6-deoxy analogues 5 and 6 was evaluated (Scheme 2). Interest in aziridines 3–6 derived from the consideration that if their behavior in the glycosylation of alcohols is similar to that of epoxides 1 and 2 an amino

group can theoretically be regio- and stereoselectively (α or β) introduced on the C(4) carbon of a stereodefined azapyranoside system with the contemporary formation of previously undescribed alkyl 4-amino-2,3-unsaturated-N-Cbzimino-O-glycosides such as 7 and 8. These compounds are useful precursors for the synthesis, through corresponding alkyl 4-amino-N-Cbz-azapyranosides 9 and 10, of 4-amino-1-deoxy-piperidine azasugars such as 11 and 12 potential glycosidases inhibitors, which, in this way, can be regio-and stereoselectively obtained. 3,4

Scheme 1. Stereoselective Addition of *O*-Nucleophiles to the *N*-Cbz-Imino Glycal-Derived Allyl Epoxides **1** and **2**

⁽¹⁾ Di Bussolo, V.; Fiasella, A.; Romano, M. R.; Favero, L.; Pineschi, M.; Crotti, P. Org. Lett. 2007, 9, 4479.

Scheme 2. Synthetic Use of *N*-Cbz-Imino Glycal-Derived Allyl Aziridines **3**–**6**

The experimental feasibility of the above-described amination process was checked by means of the 6-deoxy aziridines $\bf 5$ and $\bf 6$, taken as appropriate models. The decidedly simpler protocol for introduction of a methyl group, ${}^{5a-c}$ compared to a $-CH_2OBn$ side chain, ${}^{1.5d}$ into these iminoglycal systems as well as considerations based on results previously obtained in the glycal system determined our preference for using aziridines $\bf 5$ and $\bf 6$ rather than aziridines $\bf 3$ and $\bf 4$.

Aziridines **5** and **6** were stereoselectively prepared starting from epoxides **18** and **19**, respectively, which in turn were prepared starting from the common synthetic intermediate, the α -hydroxy ketone **17** (Schemes 3–5).

Scheme 3. Stereoselective Synthesis of α -Hydroxy Ketone 17, the Precursor of Allyl Epoxides 18 and 19

In a racemic application^{5c} of Comins' enantioselective procedure, ^{5a,b} the regioselective addition of MeMgBr to pyridinium chloride **13**, generated in situ by reaction of 4-methoxy pyridine with Cbz-Cl, afforded, after acid

Scheme 4. Stereoselective Synthesis of Allyl Epoxides 18 and

Scheme 5. Stereoselective Synthesis of *trans-N*-Nosyl-*O*-mesylates 31 and 35, the Precursors of Aziridines 5 and 6

hydrolysis of the intermediate enol ether **14**, the dihydropyridone **15** which was acetoxylated by Pb(OAc)₄, with the completely regio- and stereoselective formation of α -acetoxy ketone **16**. Acid hydrolysis (HCl/EtOH) of **16** afforded the α -hydroxy ketone **17** (Scheme 3).

For the synthesis of **19**, α-hydroxy ketone **17** was transformed (MsCl/Py) into the corresponding mesylate **20** which was epimerized (AcONa/MeCN, 90 °C, 4 days) to a 60:40 mixture of the diastereoisomeric mesylate **21** and the starting mesylate **20**. The inseparable mixture of mesylates **20** and **21** was reduced (NaBH₄/CeCl₃),⁸ in a completely stereoselective fashion, to a corresponding mixture of *cis*-hydroxy mesylate **22** and *trans*-hydroxy mesylate **23** which were separated by flash chromatography (Scheme 4).⁹ The

2676 Org. Lett., Vol. 11, No. 12, 2009

⁽³⁾ Dihydroxylation of the double bond of *O*-glycosides **7** and **8** should reasonably occur in the opposite direction to the substituents on C(1) and C(4) and lead to azapyranosides **9** and **10**, respectively, which can be transformed into the corresponding 4-amino-1-deoxy-azasugars **11** and **12** by deprotection of the *N*-Cbz group. See, for example: Tschamber, T.; Backenstrass, F.; Neuburger, M.; Zehnder, M.; Streith, J. *Tetrahedron* **1994**, 50, 1135.

⁽⁴⁾ A β -stereoselective introduction of a —NHAc group on C(4) of an iminosugar precursor has been recently described: Toumieux, S.; Compain, P.; Martin, O. R. *J. Org. Chem.* **2008**, *73*, 2155.

^{(5) (}a) Comins, D. L.; Joseph, S. P.; Goehring, R. R. *J. Am. Chem. Soc.* **1994**, *116*, 4719. (b) Comins, D. L.; Goehring, R. R.; Joseph, S. P.; O'Connor, S. *J. Org. Chem.* **1990**, *55*, 2574. (c) Comins, D. L.; Brown, J. D. *Tetrahedron Lett.* **1986**, 27, 4549. (d) Comins, D. L.; Fulp, A. B. *Tetrahedron Lett.* **2001**, *42*, 6839.

⁽⁶⁾ We have previously observed that replacing the $-CH_2OBn$ group on the C(5) of a glycal-derived allyl oxirane system with the simpler methyl group has no influence on the completely regio- and stereoselective glycosylation of O-nucleophiles or on the conformational equilibrium of these systems: Di Bussolo, V.; Favero, L.; Romano, M. R.; Pineschi, M.; Crotti, P. Tetrahedron 2008, 64, 8188, and references therein. The same behavior can reasonably be expected with the 6-deoxy aziridines 5 and 6 and the related 6-OBn-substituted aziridines 3 and 4. As a consequence, the results which are obtained with aziridines 5 and 6 can reasonably be extended to aziridines 3 and 4 too.

⁽⁷⁾ As in the case of epoxides 1 and 2, aziridines 5 and 6 were prepared in a racemic form. However, the same synthetic procedure can reasonably be used for a corresponding enantioselective synthesis, provided that the methyl introduction step is carried out in an asymmetric fashion. 5a

⁽⁸⁾ Luche, J.-L.; Gemal, A. L. J. Am. Chem. Soc. 1979, 101, 5848.

trans-hydroxy mesylate **23** was the stable ultimate precursor of epoxide **19**. ¹⁰ For the synthesis of epoxide **18**, α-hydroxy ketone **17** was stereoselectively reduced [Me₄NBH-(OAc)₃]^{1,5d} to *trans*-diol **24** and subsequently transformed into the corresponding diacetate **25**. Regioselective saponification (0.053 N K₂CO₃ in 16:1 MeOH/H₂O) of **25** afforded, after 5 h at -30 °C, a crude product mostly consisting of *trans*-hydroxy acetate **26** (57%) accompanied by a certain amount of the starting diacetate **25** (38%) and diol **24** (5%). ¹¹ After separation, *trans*-hydroxy acetate **26** was transformed into the *trans* mesyloxy acetate **27**, the stable ultimate precursor of epoxide **18** (Scheme 4). ^{10,12}

For the synthesis of aziridine 5, epoxide 18, obtained by cyclization (t-BuOK/MeCN) of trans-mesyloxy acetate 27, was subjected to azidolysis by tetramethylguanidinium azide (TMGA) affording trans-azido alcohol 28 in a completely 1,2-regio- and anti-stereoselective way. Reduction of 28 by resin-supported PPh₃¹³ in THF led to the corresponding trans-amino alcohol 29, which was regioselectively nosylated at the amino group by o-nitrobenzenesulfonyl chloride (NsCl)/Et₃N/CH₂Cl₂ protocol with the formation of the corresponding N-nosyl derivative 30. Subsequent mesylation (MsCl/Py) of 30 at the residual hydroxy functionality afforded the trans-N-nosyl-O-mesylate 31, the stable ultimate precursor of N-nosyl aziridine 5 (Scheme 5).¹⁰ The same protocol applied to epoxide 19, obtained by cyclization (t-BuOK/MeCN) of trans-hydroxy mesylate 23, yielded through the corresponding synthetic intermediates t-32-34, ¹⁴ the diastereoisomeric trans-N-nosyl-O-mesylate 35, the precursor of aziridine 6 (Scheme 5).7,10

In an examination of the regio- and stereochemical behavior of the new imino glycal-derived allyl *N*-nosyl aziridines **5** and **6** with *O*-nucleophiles, the addition reactions with simple, low-boiling alcohols such as MeOH, EtOH, *i*-PrOH, *t*-BuOH, and allylic alcohol were examined by using the nucleophile (alcohol) as the reaction solvent (*protocol A* reaction conditions). ¹⁵ In spite of the presence of a large amount of nucleophilic molecules, the reactions turned out to be completely 1,4-regio- and stereoselective with nucleophilic attack on the C(1) carbon of the allyl

(9) Cis-hydroxy mesylate 22 is recycled by oxidation (PCC, AcONa, CH_2Cl_2) to α -mesyloxy ketone 20 (89% yield).

system and exclusive formation of the corresponding alkyl 4-(N-nosylamino)-2,3-unsaturated-N-Cbz-imino-O-glycosides 37–39 α (from 5) and 42–45 β (from 6) with the same configuration as the starting aziridine. The only exception was given by the methanolysis reactions, which afforded mixtures of the corresponding anomeric methyl O-glycosides 36 α and 36 β from 5 and 41 α and 41 β from 6. In the reaction mixture from aziridine 6, the anomer (41 β) with configuration the same as the starting aziridine was the main product (41 β :41 α = 85:15), whereas from aziridine 5 an inverted result was obtained and methyl β -O-glycoside 36 β having a configuration opposite to that of the starting aziridine turned out to be the main product (36 β :36 α = 65:35) (Scheme 6). However, in both cases,

Scheme 6. Regio- and Stereoselectivity of the Glycosylation of Alcohols and Monosaccharides by Aziridines **5** and **6** Under *Protocols A* and/or *B*

ROH = MeOH, EtOH, i-PrOH, t-BuOH, allyl-OH, BnOH, Diacetone-D-Glucose

^a Purified product (preparative TLC or flash chromatography). ^b Crude product. ^c See footnote 16. ^d Z = 3-(1,2;4,5-di-O-isopropylidene-|3-D--glucofuranosyl)-.

when the reactions were repeated by using a few nucleophile (alcohol) equivalents in anhydrous MeCN (protocol B reaction conditions), 15 a complete stereoselectivity was observed, and the corresponding methyl O-glycoside with the configuration the same as the starting aziridine (36α from 5 and 41β from 6) was the only reaction product. Protocol B reaction conditions were necessarily used also in the glycosylation of benzyl alcohol by 5 and 6 and diacetone-D-glucose (a partially protected monosaccharide) by 6, as examples of O-nucleophiles for which protocol A reaction conditions are clearly not feasible. In all cases,

Org. Lett., Vol. 11, No. 12, 2009

⁽¹⁰⁾ Epoxides **18** and **19** and *N*-nosyl aziridines **5** and **6** are not stable and can be prepared only in situ by cyclization under basic conditions (t-BuOK for epoxides and K_2CO_3 for aziridines) of the corresponding stable precursor and made to react immediately with a nucleophile.

⁽¹¹⁾ The recycling of diacetate 25 and diol 24 makes the overall yield of the desired *trans*-hydroxy acetate 26 more acceptable.

⁽¹²⁾ In a preliminary examination of their ability as glycosyl donors in the reaction with alcohols, the new 6-deoxy epoxides $\bf 18$ and $\bf 19$ showed a regio- and stereoselective behavior completely identical to that of the corresponding 6-OBn-substituted epoxides $\bf 1$ and $\bf 2$ (see Supporting Information). This constitutes a nice confirmation of what was previously admitted about the presence of a methyl or a $-CH_2OBn$ group on C(5) of an imino glycal system. 6

⁽¹³⁾ Zou, W.; Sandbhor, M.; Bhasin, M. *J. Org. Chem.* **2007**, *72*, 1226. (14) The azidolysis of epoxide **19** by TMGA is not completely

stereoselective, leading to an 8:2 mixture of *trans*-azido alcohol *t*-32 and diastereoisomeric *cis*-azido alcohol *t*-32. Separation by flash chromatography afforded pure *trans*-azido alcohol *t*-32.

⁽¹⁵⁾ In the reaction carried out under *protocol A*, a solution of *trans-N*-nosyl-*O*-mesylate **31** (or **35**) in the glycosyl acceptor (alcohol) is treated with K₂CO₃ (3 equiv). In the reaction carried out under *protocol B*, a solution of *trans-N*-nosyl-*O*-mesylate **31** (or **35**) in anhydrous MeCN containing the glycosyl acceptor (3 equiv) is treated with K₂CO₃ (3 equiv).

⁽¹⁶⁾ In the reaction of aziridine **6** with *t*-BuOH, the corresponding β -O-glycoside **44\beta** is accompanied by a certain amount (about 20%) of an unidentified nonaddition product (see Supporting Information).

⁽¹⁷⁾ The result obtained with aziridine 5 in the presence of a large amount of MeOH could be due to a certain intrinsic tendency of iminoglycal systems towards a *product-dependent* selectivity.¹

the corresponding 4-(N-nosylamino)- α -O-glycoside (40α) from 5 and 4-(N-nosylamino)- β -O-glycoside (46β and 47β) from 6 were the only reaction products (Scheme 6). ^{18,19}

Analogously to the same reaction on the related epoxides 1 and 2, the complete 1,4-regio- and stereocontrol observed in the glycosylation of alcohols by aziridines 5 and 6 can be explained by a possible coordination (hydrogen bonding) between the aziridine nitrogen and the O-nucleophile. In this way, the nucleophile (alcohol) is guided to the α -face in the case of 5, reacting through conformer 5A, or the β -face in the case of 6, reacting through the corresponding conformer 6B,²⁰ respectively, suitably arranged for an entropically favored attack on the C(1) carbon, from the same side as the aziridine ring (*routes a* and *b*, Scheme 7). The corre-

Scheme 7. Rationalization of the *Substrate-Dependent* Selectivity in the Glycosylation of Alcohols and Monosaccharides by Allyl Aziridines 5 and 6

R = Me, Et, i-Pr, t-Bu, allyl, benzyl, 3-(1,2;4,5-di-O-isopropylidene-β-p-glucofuranosyl)-

sponding 4-(N-nosylamino)-2,3-unsaturated-O-glycosides (36-40 α from 5 and 41-47 β from 6), with configuration the same as the starting aziridine, were consequently obtained (*substrate-dependent* selectivity).

To check the possibility of deprotecting selectively the N-nosylamino functionality of glycosides $36-40\alpha$ and $41-47\beta$ without affecting the carbamate moiety, the usual PhSH/ K_2 CO₃ protocol²¹ was applied to i-propyl O-glycosides 38α and 43β , taken as suitable models for the reaction. A clean reaction occurred with the exclusive formation of the corresponding 4-amino derivatives 48α and 49β , in a short reaction time (2 h) and respectable yield (65–68%, calculated after purification from the excess of PhSH) (Scheme 8).²²

Scheme 8. Deprotection of 4-(*N*-Nosylamino)-*O*-glycosides 38α and 43β to Corresponding 4-Amino-*O*-glycosides 48α and 49β

In conclusion, we have demonstrated the possibility of introducing a free amino group on the C(4) of a 2,3-unsaturated-*N*-Cbz-imino-*O*-glycoside, starting from corresponding allyl *N*-nosyl aziridines. In the only 4-amino-*O*-glycoside obtained in each case, the configuration around C(4) and anomeric C(1) is the same and corresponds to that of the starting aziridine in a new version of a *substrate-dependent* selectivity applied to an *N*-Cbz-imino glycal-derived system.

Acknowledgment. This work was supported by the University of Pisa and MIUR, Roma. P.C. gratefully acknowledges Merck Research Laboratories for the financial support deriving from the 2005 ADP Chemistry Award.

Supporting Information Available: Experimental details, spectral and analytical data for all reaction products, and theoretical conformational analysis for aziridines **5-Ac** and **6-Ac**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL900742P

2678 Org. Lett., Vol. 11, No. 12, 2009

⁽¹⁸⁾ In the reaction of aziridine **6** with diacetone-D-glucose, β -O-glycoside **47\beta** is obtained as a mixture of corresponding D,L-diastereoisomers (see Supporting Information).

⁽¹⁹⁾ The structures and configurations of O-glycosides $36-40\alpha$, 36β , $41-47\beta$, and 41α were determined by means of their ¹H NMR spectra and appropriate NOE experiments.

⁽²⁰⁾ Theoretical calculations, carried out on appropriate, simplified models (5-Ac and 6-Ac), indicated that aziridines 5 and 6 exist as the only corresponding conformer 5A and 6B, respectively, with the methyl group axial (Scheme 7) (see Supporting Information).

⁽²¹⁾ Di Bussolo, V.; Romano, M. R.; Pineschi, M.; Crotti, P. *Tetrahedron* **2007**, *63*, 2482, and references therein.

⁽²²⁾ Considering the mildness of the reaction conditions and the efficiency demonstrated on O-glycosides 38α and 43β , the deprotection protocol (PhSH/K₂CO₃) can reasonably be applied to all the other 4-(N-nosylamino)-O-glycosides synthesized (Scheme 6).